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Abstract. A system that controls a team of autonomous vehicles should be able 

to accurately predict the expected outcomes of various subtasks. For example, 

this may involve estimating how well a vehicle will perform when searching a 

designated area. We present CBE, a case-based estimation algorithm, and apply 

it to the task of predicting the performance of autonomous vehicles using 

simulators of varying fidelity and past performance. Since there are costs to 

evaluating the performance in simulators (i.e., higher fidelity simulators are 

more computationally expensive) and in deployment (i.e., potential human 

injury and deployment expenses), CBE uses a variant of local linear regression 

to estimate values that cannot be directly evaluated, and incrementally revises 

its case base. We empirically evaluate CBE on Humanitarian Assistance / 

Disaster Relief (HA/DR) scenarios and show it to be more accurate than several 

baselines and more efficient than using a low fidelity simulator.  

1 Introduction 

Humanitarian Assistance / Disaster Relief (HA/DR) missions can occur without warn-

ing and require a rapid response to minimize damage and preserve human life. Addi-

tionally, they often occur in remote areas (e.g., an avalanche site) or dangerous loca-

tions (e.g., flooded towns, cities damaged by earthquakes, active wildfires), so it may 

be difficult for human relief workers to safely assist. Instead, autonomous vehicles 

can be used in place of, or in collaboration with, humans to allow for quicker and 

safer deployments.  

We present Case-Based Estimator (CBE), a utility component of a larger HA/DR 

system that assigns autonomous vehicles to search areas in disaster zones. CBE esti-

mates the performance of numerous vehicle-zone pairings and allows a human  opera-

tor or automated mission manager to make informed decisions about how best to allo-

cate the vehicles. Missions vary in their properties (i.e., type of disaster, location, 

terrain, type of vehicles, size of relief team). Thus, CBE may lack knowledge about 

how the autonomous vehicles will perform and must instead rely on simulators with 

varying fidelity. However, given the real-time nature of HA/DR missions there may 
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not be time to evaluate every vehicle-zone pairing in every simulator. Instead, CBE 

will need to use information from the lower fidelity, less computationally expensive 

simulators to predict performance on the higher fidelity simulators and select a subset 

of vehicle-zone pairs to examine in more detail. This process employs regression to 

estimate the performance in successively higher fidelity simulators and allows the 

decision maker (e.g., Operator or automated mission planner) to make informed deci-

sions on which tasks to assign to vehicles. We report an empirical study in which 

CBE yields more accurate results than lower fidelity simulators and outperforms un-

filtered regression approaches. 

In this paper we describe CBE and how it uses data from simulators (introduced in 

section 3) of varying fidelity to predict the performance of autonomous vehicles. Sec-

tion 2 examines related work in the areas of case-based estimation and agent deploy-

ment. Section 3 describes the HA/DR domain. Section 4 briefly summarizes our 

HA/DR command system. Section 5 focuses on how we use CBR to estimate the 

performance of autonomous HA/DR vehicles. We evaluate our approach in Section 6, 

followed by a discussion of our results in Section 7 and concluding remarks in Sec-

tion 8. 

2 Related Work 

Our current work focuses on online numeric prediction; we compute a linear regres-

sion equation from a subset of the most similar cases’ outcomes using an online algo-

rithm. This is an example of locally weighted regression (LWR) (Cleveland & Devlin, 

1988), and in particular of algorithms that compute local estimates of the regression 

surface (Atkeson et al., 1997a). These popular algorithms have a long history of use 

in, for example, robotics control tasks (Atkeson et al., 1997b). Many variants have 

been examined in the CBR literature, including in the context of case-based rein-

forcement learning techniques (e.g., Aha & Salzberg, 1993; Gabel & Riedmiller, 

2007; Molineaux et al., 2008). Given a problem 𝑝, LWR algorithms identify the set 𝐾 

of 𝑝’s k-nearest neighbors and compute a linear or nonlinear regression equation from 

𝐾’s (numeric) solution values. These are often similarity-weighted, where the most 

similar neighbors exert more influence on the derivation of the equation. This equa-

tion is then used to predict a solution value for 𝑝. Our algorithm, CBE, computes a 

simple unweighted linear regression model to make predictions, but where the value 

of k is not fixed (it varies depending on which cases exceed a similarity threshold). 

We have found it to perform well in our application, and leave the investigation of 

other LWR methods for future work. There are also similarities to two-stage retrieval 

models such as MAC/FAC in Forbus et al. (1995). It uses a simple similarity metric to 

identify a subset of cases to evaluate with a more comprehensive structural analysis. 

This is similar to CBE, which uses a function based estimate of simulation perfor-

mance to retrieve promising candidates for further evaluation using more rigorous 

simulation models.  

CBR has previously been studied for robotics applications. For example, Likha-

chev et al. (2002) use CBR to learn parameter settings for the behavior-based control 



of a ground robot in environments that change over time. While they focus on motion 

control for a single robot, we instead focus on the high-level control of robot teams. 

Ros et al. (2009) focus on action selection for RoboCup soccer, and use a sophisticat-

ed representation and reasoning method. However, this body of research focuses on 

motion planning for relatively short-term behaviors, whereas we focus on longer du-

ration plans that are monitored by a goal reasoning (GR) module (see Section 4). 

GR agents that employ CBR techniques have been used for other control tasks, 

such as formulating the goals for team coordination (Jaidee et al., 2013), predicting 

the behavior of hostile agents (Borck et al., 2015), and recognizing the plans of an 

agent’s teammates (Gillespie et al., 2015). However, in contrast to these other integra-

tions, our focus is on predicting the outcomes of a plan executed by a set of robots.  

In (Auslander et al., 2014) we described a CBR algorithm that sets the parameter 

values of complex HA/DR plans involving a heterogeneous set of unmanned autono-

mous vehicles that search multiple Areas of Interest (AOI). We represented cases 

using a similar problem, solution, outcome tuple. Our algorithm found solution pa-

rameter settings that performed well by adapting similar cases and using their out-

come metrics to vote on parameter settings. When executing plans generated using 

our case-based algorithm on problems with high uncertainty, it outperformed plans 

generated using baseline approaches. In this paper, we instead focus on a complemen-

tary problem: estimating similar outcomes given a problem and solution parameter 

settings. These two approaches can potentially be combined in the future to improve 

parameter setting by estimating the performance of a proposed solution. 

Finally, CBR has previously been studied for military applications, including disas-

ter response. For example, Abi-Zeid et al. (1999) studied incident prosecution, includ-

ing real time support for situation assessment in search and rescue missions. Their 

ASISA system uses CBR to select hierarchical information-gathering plans for situa-

tion assessment. Muñoz-Avila et al.'s (1999) HICAP instead uses conversational CBR 

to assist operators with refining tasks in support of noncombatant evacuation opera-

tions. SiN (Muñoz-Avila et al., 2001) is an extension that integrates a planner to au-

tomatically decompose tasks where feasible. However, while these systems use plan-

ning modules to support rescue operations, they do not predict the outcomes of a giv-

en plan’s execution, nor focus on coordinating robot team behaviors. 

3 Humanitarian Assistance / Disaster Relief Operations 

HA/DR operations (O’Connor, 2012) are performed by several countries in response 

to events such as Hurricane Katrina (August 2005), the Haiti earthquake (January 

2010), and Typhoon Haiyan (November 2013). Before any personnel can begin 

operations, information about the Area of Operations must be acquired (e.g., locations 

of survivors, infrastructure condition, viable ingress points, and evacuation routes). 

This information will also need to be continuously updated as the situation develops. 

Each Area of Operation is composed of one or more Areas of Interest that need to be 

searched. 



Current operations employ remotely controlled drones and human-piloted 

helicopters to gather this information. We are developing methods for deploying a 

heterogeneous team of autonomous unmanned vehicles with appropriate sensor 

platforms to automate much of this process, so as to reduce time and cost. This should 

enable responders to perform critical tasks more quickly for HA/DR operations.  

Independently of which system is used, an Operator given a list of missions must be 

able to prioritize which missions should be planned for and scheduled.   

We focus on a method for comparing potential mission outcomes to enable the 

Operator or mission planner to select which missions to perform. These missions can 

be automatically generated from our goal reasoning system or provided by operators.  

This module’s task is to provide estimates of the outcome metrics, which can be used 

to make more informed decisions on what to dispatch. This may yield better plans.   

We use three simulations of varying fidelity in the CBE: an inexpensive function-

based approach, a quick low fidelity simulator, and a slower high fidelity simulation. 

The first can estimate a metric without simulation (e.g., by computing the path a vehi-

cle might take and dividing the path length by the vehicle’s speed to estimate time 

required). To ensure efficiency, these estimates do not account for important factors 

such as wind and fuel levels, but they do provide instant, initial results.   

Our low fidelity simulation is MASON (Luke et al., 2005), a discrete-event multi-

agent simulator that models all physics behaviors and physicomimetics control (Mar-

tinson et al., 2011). MASON models the physical movements of generic agents acting 

in the environment. However, it lacks specific physical models of its actors and does 

not account for detailed problem factors such as the effects of wind. MASON’s low 

fidelity allows it to more quickly generate results, but these are likely to be less accu-

rate because it does not model all features.   

Open AMASE (Duquette, 2009) is the highest fidelity simulation we use, and in 

this paper we use it as a substitute for a real-world environment. This simulation 

models small tactical unmanned aircraft systems (STUAS) using a kinematic flight 

dynamics model that includes environmental effects (e.g., wind) on performance. 

AMASE also has facilities for modelling the field of view of cameras mounted on the 

STUAS based on the vehicles’ six degree of freedom pose. This allows AMASE to 

calculate a metric for coverage defined as the area the sensor observed at a specified 

resolution. The lower fidelity models cannot produce this metric, and instead assume 

the paths followed produced full coverage. Figure 1 displays an example problem 

using both real-world data and AMASE’s representation. 

4 Situated Decision Process 

To intelligently act in domains like HA/DR, a team of autonomous agents must con-

tinually monitor, evaluate, and dispatch new tasks or goals. To this end, we have de-

signed a system architecture called the Situated Decision Process (SDP) (Roberts et 

al., 2015). In the SDP, a centralized Mission Manager subsystem assigns primitive 

goals to teams of autonomous agents, based on the input of an Operator and the vehi-

cles’ observations during execution. Intelligent, autonomous evaluation and selections 



of goals or tasks during execution requires rapid, accurate estimation of multiple sce-

nario parameters. 

 

 

 

 

In HA/DR scenarios, the vehicles must quickly react to changes in the perceived 

environment, as well as to changes to the Operator’s inputs. Doing so requires the 

rapid evaluation of such changes; it requires the ability to predict the effect of per-

forming tasks more quickly than can be simulated with high fidelity and with more 

accuracy than can be achieved with low fidelity. This led us to consider using CBR to 

quickly and accurately estimate the parameter settings used by the Mission Manager 

to intelligently evaluate the utility of the vehicles’ goals and tasks. 

At the individual vehicle and sub-team level, CBE’s estimates can be used in moti-

vators for goal selection in a goal reasoning algorithm (Wilson et al., 2013). This 

would help us implement the situated portion of the SDP by permitting decision mak-

ing on vehicles without direct access to the Mission Manager. This enables vehicles to 

choose predictable actions that should provide locally optimal results. 

5 Case-Based Performance Estimation 

To provide the data necessary for the Mission Manager to make informed decisions 

about its various vehicle deployment options, we use the CBE to evaluate mission 

options in HA/DR scenarios. We describe its case representation in Section 5.1 and 

Figure 1: Left: Representation of a problem set using OpenStreetMap data. 

Right: Same problem shown in AMASE with tracks for the airport region. 

 



case similarity metric in Section 5.2. The CBR algorithm and knowledge acquisition 

technique are presented in Section 5.3. 

 

5.1 Case Representation 

We represent a case 𝐶 = 〈𝑝, 𝑂𝑎𝑙𝑙〉 as a problem 𝑝 and the set of all outcomes 𝑂𝑎𝑙𝑙  

when that problem is evaluated using models of different fidelity. In this paper, we 

use three models of increasing complexity: an evaluation function, a low fidelity sim-

ulator (MASON), and a high fidelity simulator (AMASE). Similarly, we are also in-

terested in estimating the performance when using the simulators (e.g., if the simula-

tor is unavailable or computationally expensive). As such, the case contains the out-

comes generated by the evaluation function (𝑂𝑒), the low fidelity simulator (𝑂𝑙), and 

the high fidelity simulator (𝑂ℎ), and estimates of the low and high fidelity simulations 

(𝑂𝑙𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
 and 𝑂ℎ𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

): 𝐶 = 〈𝑝, 𝑂𝑒 , 𝑂𝑙 , 𝑂𝑙𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
, 𝑂ℎ , 𝑂ℎ𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

〉.   

Table 1 provides detail on this representation. A problem 𝑝 is composed of a prob-

lem description and proposed solution. The problem description is further divided into 

four features that characterize an aerial search task. Total Area of AOI is the total size 

of the area of interest (AOI) (i.e., the area being searched) in square meters. The Dis-

tance to the AOI is a measure of how far the search vehicle would have to travel to 

reach the center of the area. This becomes important as the trip time becomes a signif-

icant cost of the operation. Wind Speed is a measure of the magnitude of the wind in 

meters per second. Wind is a large source of error between the low and high fidelity 

simulations and tracking it enables a system to separate cases by the wind magnitude. 

Wind Direction is a measure of the alignment of the wind relative to the search area; it 

is a value in [0, 90].  

A solution represents the configuration of the search vehicles that will be assigned 

to the search area (e.g., vehicle types, the number of vehicles, sensor configurations). 

Here we focus on problems where a single vehicle of a fixed type is assigned to per-

form the search. (See (Auslander et al., 2014) for more complex solutions.)  

Case Component Attribute Name Description 

P
ro

b
le

m
 (

p
) 

Problem 

Description 

Total Area of AOI Total area of AOI in m2 

Distance to AOI Distance from vehicle to AOI in m 

Wind Speed The speed of wind in m/s 

Wind Direction Wind angle relative to AOI orientation 

Solution STUAS Configuration 

O
u

tc
o

m
es

  (
𝑂

𝑎
𝑙𝑙

) 𝑂𝑒 
Duration Time to complete operation 

Energy Amount of energy consumed in Joules 

𝑂𝑙 
𝑂𝑙𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

 
Duration Time to complete operation 

Energy Amount of energy consumed in Joules 

𝑂ℎ 
𝑂ℎ𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

 

Duration Time to complete operation 

Coverage Percentage of area observed by sensor 

Energy Amount of energy consumed in Joules 

Table 1: CBE’s Case Representation 



Initially, each case contains only the problem description with unknown values for 

each outcome. As more information is obtained (i.e., evaluating the problem using the 

evaluation function or one of the simulators, or estimating the outcomes), it is added 

to the case. Only promising problems identified from the performance estimates are 

evaluated at the higher, more computationally expensive fidelities, so not all cases 

will have values for all outcomes. All outcomes have measurements for the search 

duration (seconds) and search energy (joules), while search coverage (percent of area 

observed with sensors) can be measured only by the high fidelity simulator and is 

therefore only contained in its outcomes. The estimated values may be continually 

overwritten, if new data becomes available that modifies these values, while the data 

obtained from simulation is recorded only once. The estimates serve as an inexpen-

sive temporary measurement until the actual simulation is run; they are no longer used 

after the actual values are known.  

5.2 Case Similarity 

Case similarity is calculated using a weighted comparison of the problem features in 

two problems. Given two problems 𝑝1  and  𝑝2 , the similarity metric (Equation 1) 

calculates a similarity between 0 and 1. Each problem contains 𝑛 features, and each 

feature 𝑓𝑖 is given a weight 𝑤𝑖  (maxValue(i) and minValue(i) represent the maximum 

and minimum value the 𝑖th
 feature can take). In CBE, there are four problem features: 

Total Area of AOI, Distance to AOI, Wind Speed, and Wind Direction. Total Area of 

AOI and Distance to AOI are assigned weights of 2.0, whereas other features are as-

signed weights of 1.0 to enable better separation of regions of varying sizes and loca-

tions. A weighted approach is used to allow more flexibility in discriminating among 

cases (e.g., emphasizing the geometric properties of the domain).   

 

𝑠𝑖𝑚(𝑝1, 𝑝2) =
1

∑ 𝑤𝑖
𝑛
𝑖=1

∑ 𝑤𝑖 (1 −
|𝑝1 . 𝑓𝑖 − 𝑝2 . 𝑓𝑖|

maxValue(𝑖) − min 𝑉𝑎𝑙𝑢𝑒(𝑖)
) 

𝑛

𝑖=1

   (1) 

5.3 Performance Estimation Algorithm 

CBE (Algorithm 1) enables a computationally inexpensive and accurate evaluation of 

potential configurations provided by the Mission Manager. Evaluating each potential 

configuration in the simulators can be expensive. Thus, CBE allows the Mission 

Manager to provide feedback about which configurations should be evaluated in more 

detail. To begin with, CBE receives a set of problems 𝑃𝑟𝑜𝑏𝑠 representing possible 

missions under consideration from the Mission Manager (MM). For each problem 

𝑝 ∈ 𝑃𝑟𝑜𝑏𝑠 , it retrieves a similar case 𝐶  from case base 𝐶𝐵  using 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝐶𝑎𝑠𝑒(𝑝, 𝜆, 𝐶𝐵), which examines all cases in 𝐶𝐵 that are above similarity 𝜆 to 

𝑝 using from equation 1 and returns the most similar case with a known 𝑂ℎ (i.e., pref-

erence is given to cases with more known values). If no above-threshold cases have a 

known 𝑂ℎ, the most similar case is returned. If no cases are above threshold, a null 

value is returned. If a case is retrieved, CBE uses it. Otherwise, CBE evaluates 𝑝 us-



ing the evaluation function (i.e., computing 𝑂𝑒) and creates a new case (the values for 

all other outcomes are set to null). The retrieved or created case is then added to a set 

of cases to be further evaluated.   

If the problem’s MASON and AMASE values are not known (i.e., the problem has 

never been evaluated in the simulators), CBE then estimates the MASON and 

AMASE values (i.e., 𝑂𝑙𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
 and 𝑂ℎ𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

). The resulting cases are then sent to the 

Mission Manager for filtering because it is best able to choose what problems and 

metrics to optimize over given the overall mission context.   

The Mission Manager returns a subset of cases (𝐶𝐵𝐸
′ ) for further evaluation. For 

each of these cases, if the actual MASON outcome values are not known, it is run in 

the MASON simulator and its corresponding 𝑂𝑙  values are revised. Afterward, the 

estimation routine is run again to generate new estimations for the AMASE outcome 

values and the resulting subset is returned to the Mission Manager. Not shown in 

𝐶𝐵𝐸
′ ← 𝑅𝑢𝑛𝑀𝐴𝑆𝑂𝑁𝐴𝑛𝑑𝑅𝑒𝑣𝑖𝑠𝑒𝐶𝑎𝑠𝑒𝑠(𝐶𝐵𝐸

′ ); 
𝐶𝐵𝐸

′ ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠(𝐶𝐵𝐸
′ , 𝐶𝐵); 

Algorithm 1: Case-Based Estimator (CBE) 

 

Inputs: 𝑝𝑟𝑜𝑏𝑠 = {𝑝1, 𝑝2, … , 𝑝𝑛} 

Returns: 𝐶𝐵𝐸
′  // Performance of problems in MM filtered subset of cases  

Legend:   

     𝐶𝐵              // The (entire) case base 
     𝐶𝐵𝐸 ← {∅}  // Subset of cases to be evaluated 
 

Function: 𝐹𝑖𝑛𝑑𝐵𝑒𝑠𝑡𝑃𝑟𝑜𝑏𝑙𝑒𝑚(𝑝𝑟𝑜𝑏𝑠) returns 𝐶𝐵𝐸
′  

foreach 𝑝 ∈ 𝑝𝑟𝑜𝑏𝑠 do 
      𝐶 ← 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝐶𝑎𝑠𝑒(𝑝, 𝜆, 𝐶𝐵); 
      if  𝐶 = ∅ then 
            𝑂𝑒 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑝); 
            𝐶𝑛𝑒𝑤 ← 〈𝑝, 𝑂𝑒 , ∅, ∅, ∅, ∅〉; 
            𝐶𝐵 ← 𝐶𝐵 ∪ 𝐶𝑛𝑒𝑤; 
            𝐶𝐵𝐸 ← 𝐶𝐵𝐸 ∪ 𝐶𝑛𝑒𝑤 ; 
      else 
            𝐶𝐵𝐸 ← 𝐶𝐵𝐸 ∪ 𝐶; 
𝐶𝐵𝐸 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠(𝐶𝐵𝐸 , 𝐶𝐵); 

𝐶𝐵𝐸
′ ← 𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑀𝑎𝑛𝑎𝑔𝑒𝑟𝐹𝑖𝑙𝑡𝑒𝑟(𝐶𝐵𝐸); 

return 𝐶𝐵𝐸
′ ; 

 

Function: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠(𝐶𝐵𝐸 , 𝐶𝐵) 

foreach 𝐶 ∈ 𝐶𝐵𝐸  do 
      if  𝐶. 𝑂𝑙 = ∅ then 
            𝐶. 𝑂𝑙𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

← 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑀𝐴𝑆𝑂𝑁(𝐶, 𝐶𝐵);  

      if  𝐶. 𝑂ℎ = ∅ then 
             𝐶. 𝑂ℎ𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

← 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝐴𝑀𝐴𝑆𝐸(𝐶, 𝐶𝐵); 

return  𝐶𝐵𝐸  

 



Algorithm 1 is once the Mission Manager has filtered the set of problems a subset of 

these are picked to be deployed based on the Mission Manager’s criteria. The result-

ing AMASE outcome values are subsequently stored in the case (i.e., as 𝑂ℎ) if the 

case did not previously have AMASE outcome values. If AMASE outcome values 

already exist (e.g., for a repeated surveillance task), rather than ignore the data a new 

case is created from the current problem. Its MASON outcome values are also com-

puted to ensure no cases have AMASE outcome values without MASON outcome 

values. 

The functions 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑀𝑎𝑠𝑜𝑛(𝐶, 𝐶𝐵) and 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝐴𝑀𝐴𝑆𝐸(𝐶, 𝐶𝐵) are imple-

mented using a linear regression algorithm for each outcome attribute. For MASON, 

the linear regression function takes the form (𝑝, 𝑂𝑒) → 𝑂𝑙𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
. Similarly, the 

AMASE regression function is of the form (𝑝, 𝑂𝑙) → 𝑂ℎ𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
.  These regression 

algorithms are trained using cases that are above similarity 𝜃 to the current case and 

have known 𝑂𝑙  (for MASON regression) or 𝑂ℎ  (for AMASE regression) values. This 

similarity threshold ensures the regression functions are generated using only data 

from similar problems, helping isolate problems into clusters.  

This is an online learning algorithm for estimation, with data acquired every time 

the estimation system is run. For each problem, a new case can potentially be generat-

ed. As the Operator selects problems to evaluate further, the MASON and AMASE 

outcome metrics are added to the cases. As more values are known, the algorithm will 

have more data to use for regression and should increase estimation accuracy. 

6 Empirical Study 

We empirically tested the following hypotheses: 

H1: CBE’s estimate of a problem’s outcome approaches the actual outcome when 

evaluated using the high fidelity simulation over time. 

H2: CBE provides more accurate estimates than the evaluation function and low fi-

delity simulator. 

H3: CBE is more computationally efficient than the low fidelity simulator as the 

number of cases increases. 

H4: CBE’s filtered regression approach yields more accurate predictions than a 

non-filtered regression. 

In the following sections we describe the evaluation methods, algorithms tested 

and metrics used. 

6.1 Empirical Method 

An objective of these tests is to verify that CBE accurately predicts the performance 

of a configuration when run on a high fidelity simulation. Thus, our ideal performance 

baseline is provided by the high-fidelity AMASE.   

Problem sets were generated using a custom PostGIS system (Roberts et al., 2015). 

Each problem was formed by choosing a random airport from the OpenStreetMaps 



data set (Geofabrik, 2014) and finding five random buildings within a 3-5 kilometers 

radius of the airport. Each of these six locations is given a buffer region of 300 meters 

around their perimeters and the result is the search area to use in a given problem. 

Each search area is also assigned a random wind speed between 0-20 meters per sec-

ond. The six search areas (i.e., airport and five nearby buildings) are stored as a search 

and rescue (S&R) problem. We repeated this 100 times to obtain 100 S&R problems. 

Problem features (e.g., Distance to AOI, Wind Direction) are derived from these 

problems at run time. 

Each S&R problem was used to create a problem set that contains potential vehicle 

assignments for the problem. In CBE, only one vehicle assignment was used (i.e., the 

STUAS with default camera configuration). Future work will evaluate other vehicles 

and configurations as parameters, such as the use of static cameras and multiple vehi-

cles. All problems in the problem set were run in AMASE to obtain ground truth data 

(i.e., how well that vehicle will perform when assigned to search a specific region). 

A problem set run consists of giving an entire problem set to CBE and comparing 

its estimates to the known ground truth. Because we cannot know what the Mission 

Manager seeks at this level of abstraction, since it could be a human or intelligent 

subsystem, our method for selecting a subset of cases to run on MASON randomly 

selects 4 of the 6 cases. Similarly, when the final estimates are returned, 2 randomly 

selected problems (among the 4 selected) will be evaluated in AMASE. 

A test run consists of randomly ordering the 100 problem sets and sequentially giv-

ing them as input to CBE, simulating 100 sequential uses of CBE. At the end of the 

100 runs there will be 200 fully evaluated cases. We repeated this process 50 times 

and aggregated the results. All regression calculations were computed using WEKA’s 

linear regression implementation (Hall et al., 2009). 

6.2 Algorithms and Baselines Tested 

We used the following algorithms and baselines to evaluate CBE.  Each was run using 

the same evaluation problems presented in identical orderings.  

 CBE: We set 𝜃 = 0.75 to allow discrimination between building searches and 

airport searches. We set 𝜆 = 0.99 so that cases are reused only when they are 

highly similar to the problem. 

 Func: Results obtained from running the estimation function on each problem. 

 MASON: Results obtained by running MASON on each problem. 

 FuncReg: Results obtained using linear regression to estimate AMASE’s out-

comes using problem features and the function estimate. This uses all available 

AMASE data for regression (i.e., not only data from similar problems, as with 

the CBR approach). 

 MASONReg: Similar to FuncReg, but problem features and MASON out-

comes are used to estimate AMASE outcomes. This also uses all available 

AMASE data for regression. 

FuncReg and MASONReg use all data that is available to perform linear regression. 

For example, for the 100
th

 input problem set 198 cases are used (since two AMASE 



outcomes are determined from each of the previous 99 input sets) while the 1
st
 prob-

lem set will have no known AMASE outcomes. When any algorithm is unable to 

predict an AMASE outcome (i.e., no data to perform regression) a default error of 

200% is used. The Func and MASON baselines serve to show that using the values 

from only the lower fidelity simulators is inferior to using a mapping function such as 

the regression approach of CBE.   

6.3 Results and Analysis 

We now describe whether our results support our hypotheses: 

H1: Figure 2 displays results showing support for H1. It graphs the mean error of 

CBE over 50 runs after it has calculated its k
th

 AMASE outcome estimate (100 prob-

lem sets with two estimates per set). As the number of problems evaluated increases, 

the error decreases and eventually converges to approximately20% error, which is an 

improvement over our low fidelity estimate as shown in H2. The graph shows the 

error when predicting Duration. Although not shown, Energy converges similarly. 

H2: Figure 2 also displays the performance of baselines MASON and Func. CBE 

consistently outperforms the evaluation function and eventually outperforms MASON 

giving support to H2. Table 2 confirms this; using a paired t-test we found that CBE 

significantly outperforms Func for Energy and Duration. It also significantly outper-

forms MASON overall for Energy and for Duration over the final 75% of problems 

(i.e., after learning). 

H3: CBE requires fewer problems to be evaluated than if every problem is evalu-

ated in MASON (only 4 of 6 are evaluated in MASON, so 67% of the evaluations). 

Reducing necessary simulations runs is a large reduction in run time considering that, 

for an example run of an 18 minute real world mission, the MASON simulation can 

take 35 seconds while AMASE takes 95 seconds. Additionally, setting an appropriate 

value for 𝜆 can influence how often MASON is used by CBE. If there is a case that is 

similar to an input problem, that problem does not need to be evaluated in MASON if 

the case has a recorded MASON outcome. In the current evaluation about 23 cases 

per test run were found to be similar enough to an input problem to be reused. If the 

Mission Manager wanted evaluations for all of those problems (i.e., they were among 

the 4 of 6 selected for MASON evaluation), that would result in 23 fewer MASON 

evaluations out of 400. However, the Mission Manager may not require evaluations 

for any of those problems and would instead evaluate other problems, resulting in no 

additional improvements. Reducing 𝜆 to 0.98 increases this to 107 reuses. This hy-

pothesis has some support, but further exploration of parameters is warranted to find 

optimal values for this domain. 

H4: Support of H4 is shown in Figure 3 which graphs the results of CBE versus 

the two full regression approaches (i.e., they use all the cases), which begin with no 

data for the first two AMASE estimates and as such default to 200% error. This ac-

counts for the highest error in the first two AMASE estimates. In contrast, CBE uses 

the estimation function and MASON estimates, accounting for a lower initial error. 

For the remaining AMASE estimates, all three algorithms converge towards approxi-

mately 20% error. Although CBE does not appear to converge faster, its errors are 



never as large as the initial regression models.  This could be due to case reuse or the 

filtering of non-similar cases in the regression calculation. 

  

Shown in Figure 3, CBE’s performance is better than or equal to the other algo-

rithms. In the comparison of the 50 test run averages, CBE significantly outperformed 

both alternatives using a paired t-test; see Table 2. Table 3 displays the mean number 

of times, across all 50 runs, that CBE recorded lower error than the other algorithms. 

Figure 3: The error of CBE and the regression algorithms for 200 problems over 50 runs. 
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Figure 2: Graph plotting percent error for CBE and the baseline algorithms across the 200 

problems on 50 runs. 
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Additionally, it shows the mean reduction in absolute error when using CBE across 

all test runs. 

  

Table 2: Results of t-tests (p < value) showing CBE’s improvement vs. other algorithms  

CBE vs Duration Energy 

Func 0.00000 0.00000 

MASON 0.34228 (0.0 after 25% of the cases) 0.00000 

FuncReg 0.00137 0.00446 

MASONReg 0.00062 0.00130 

 

Table 3: Improvement of CBE versus the regression algorithms 

CBE vs 

Duration Energy 

# Improvements Mean Error Reduction # Improvements Mean Error Reduction 

FuncReg 54.69% 5.05% 54.05% 2.75% 

MASONReg 55.09% 5.33% 55.03% 2.97% 

7 Discussion  

The results in Section 6 clearly indicate the benefits of CBE, which recorded a 5% 

reduction in Duration error and an almost 3% reduction in Energy error. The reason 

for Energy’s lower improvement could be differences with how the low and high 

fidelity simulators are modelling recharging. In MASON a vehicle is supposed to 

remain still while recharging, while AMASE (which was built to model fixed wing 

aircraft) does not restrict movement as much while recharging. Future versions of 

these simulators will address these discrepancies and also implement a procedure for 

returning to base and landing to increase scenario realism. 

We expect that further improvements to performance will be found as more dis-

criminating problem features are identified. For example, another type of vehicle 

would yield entirely new data clusters as Energy burn rates, and flight profiles would 

differ. As more data is collected over time the accuracy of the algorithms should in-

crease and require fewer simulation runs. 

8 Conclusion 

Most CBR systems that estimate functions, such as cost, attempt to find a similar case 

and adapt their solution. We report on a novel online hybrid algorithm that can reuse 

prior learned values from similar problems and creates new estimates for others. For 

the scenarios in the domain we examine, the Case-Based Estimator (CBE) produced 

more accurate estimates from less data than two other regression algorithms.   

One of the next steps from these results is to combine the benefits of this approach 

with the parameter selection approach from our previous investigation (Auslander et 

al., 2014). Benefits may include improving suggested solutions by estimating their 

actual outcomes. Beyond this there are many ways to improve the CBE algorithm. 



One of the most promising directions would be the exploration of non-linear regres-

sion models. It is likely that some of our problem features are not independent, and a 

model that considers co-variance information may return more accurate results. We 

expect there to be tradeoffs in performance with these new models (e.g., additional 

computational resources required for increased training samples). 

Over time the amount of data in the case base will become sufficiently large to ne-

cessitate the use of case-base maintenance techniques. While in general the accuracy 

of regression algorithms will increase given more data, improvements may also ac-

crue by removing anomalous cases. In addition, as more data is obtained it may be 

possible to be more discriminative in case selection by increasing 𝜆 and 𝜃. Future 

research may identify ways to scale these parameters with the data.  
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